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Abstract

The accuracy of digital quadrature demodulation can be

improved by optimizing the matching of the inphase and

quadrature channel frequency responses. It is shown that an

image rejection performance exceeding 100 dB can be

achieved using Finite Impulse Response filters having as few

as eleven nonzero coefficients.

Introduction

In coherent radar, communication and electronic warfare

systems, it is often useful to form the inphase (I) and

quadrature (Q) components of a bandpass signal after it has

been shifted to a convenient intermediate frequency (IF). The

classical analog quadrature demodulation appproach has the

problem that accurate amplitude and phase matching of the

inphase and quadrature channels cannot be easily achieved

[1 ]-[3]. Another error results from DC offsets introduced

during the analog-to-digital conversion of the I and Q

signals. These errors are particularly serious in coherent radar

systems where they yield spurious sidebands at the image

doppler frequency [2]. Consequently, digital approaches for

performing quadrature demodulation on a digitized IF signal

have attracted attention. Problems with the matching of

analog components are eliminated and it is straightforward to

achieve high accuracy through the use of filters having a

sufficiently large number of coefficients. However, the

computational cost can be a significant disadvantage when

wideband signals must be processed in real-time.

This problem has led to the development of digital

quadrature demodulation algorithms designed for low

computational cost [4]-[6]. These also have significant

deficiencies. Approaches based on Hilbert Transformers (e.g.,

[6]) don’t suppress DC offsets and require selective analog IF

filters since the quadrature demodulator does not have usable

stopbands. Alternatively, if Infinite Impulse Response filters

are used, as proposed in [5], there are difficulties with a

frequency dependent group delay.

Figure 1 shows an alternative digital quadrature

demodulator which employs a pair of Finite Impulse

Response (FIR) highpass filters whose phase shifts differ by

rt12. The even and odd samples of a bandpass signal

nominally centered on an Intermediate Frequency (IF) of f,~

and sampled at a rate f,=4f1~ are separately processed by the

two filters. The decimation operations reduce the output data

rate in each channel to fJ4 and result in the highpass output

signals from the filters aliasing to baseband without explicit

mixing. The inphase and quadrature highpass filters are

obtained by multiplying the coefficients { h.~, .... h-z, h.,, hO,

h,, hz, .... h~} of a prototype FIR lowpass filter by cos kn/2

(even k) and sin kn/2 (odd k) respectively. This algorithm is

efficient since the inphase filter can be a half-band filter

with nearly half of its coefficients equal to zero and the

decimation operations result in the output data rate being

matched to the bandwidth of the filters. Note that the

stopbands of [DC, f,/8] and [3 f,/8,f,/2] possessed by the

resultant complex filter relax the stopband attenuation

requirements of the analog IF filter and suppress DC offsets.

The relationship of this quadrature demodulator to

approaches involving quadrature mixing and lowpass filtering

is discussed in [6].

Although the inphase and quadrature filters are derived

from a common prototype filter, they have a different number

of coefficients and their frequency responses do not exactly

match. The matching of the frequency responses is very

important because it determines the phase error/image

suppression performance that is obtainable [2].

This paper presents a new approach where the problem

of matching the frequency responses is considered in the

filter design methodology. It is shown that the error

performance is strongly dependent on the choice of filter

design parameters and tradeoffs with other performance

parameters such as passband flatness are discussed. The

results presented are for the window design method, but we

have found that analogous results are obtained for the Remez

exchange method.

Effects of Filter Design Parametem

The windows considered were the common first and second

order cosine windows and the Kaiser and Chebyshev

windows. For each window, pairs of I and Q filters having

odd numbers of coefficients up to a maximum of 49 were

designed. The frequency responses of the filters were

determined at 64 discrete frequencies distributed over the

bandwidth [fJ8,f,/4]. 13ccausc the frequency responses are

symmetric about f,/4, it is not necessary to compute them

over the full bandwidth [f,/8,3f,/8]. The phase error bound [7]
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was computed using

(1)

where Q(fi) and I(f,) are the magnitudes of the frequencY

responses of the Q and I channels at a discrete frequency f,.

In the time domain, the phase error will oscillate between

-%(fi) and +0.(f,) with a frequency 41fi-fs/41. For small ValUeS
of @,(fi), the RMS value of the phase error at f,, onn~(fi), will

be approximately @.(fi)/~2. Using this result, a measure of the

performance for all fi is provided by the RMS phase error

given by [Z@m,(fi)2/1]5 where I is the number of discrete

frequencies, Although this approach is an indirect way of

measuring the phase error, we have found good agreement

with direct measurements of the phase error of the quadrature

demodulator for simulated sinusoidal signals.

Figures 2 and 3 plot the RMS and peak phase errors for

the rectangular and common cosine windows as a function of

the total number of filter coefficients used by the I and Q

filters. The Hamming window, although better than a

rectangular window, has a poor performance and its general

trend shows only a slow improvement with an increasing

number of filter coefficients. The phase error for the Harming

window is considerably better and its trend with respect to

the number of coefficients shows a steeper slope. The

Blackman window shows a further improvement. A rather

different behaviour is observed for the Kaiser and

.Chebyschev windows plotted in Figures 4 and 5. The phase

error rapidly decreases as the number of filter coefficients

increases and then fluctuates around a value that is largely

determined by the window parameters R and B and has only

a weak dependence on the number of filter coefficients.

Another performance parameter that can be measured is

the image rejection ratio. For a sinusoidal input signal, the

expected output signal of a quadrature demodulator has a

spectral component at a frequency corresponding to the

frequency offset of the input signal from the center frequency

of the quadrature demodulator (f,~). The ratio of the power in

this spectral component to the spurious image at the negative

frequency is the image rejection ratio. Table I presents image

rejection ratios obtained for several filter designs at several

frequency offsets.

Some investigations were carried out concerning the

effects of different windows on the distortion performance

achieved with the quadrature demodulator when used in an

FM demodulator. Table II gives the peak spurious signal and

total distortion to signal power ratios for the demodulated

signal where the input signal is frequency modulated by a

sinusoid of frequency 0.00195f, with a frequency deviation

of O.elf,.

.Discussion and Conclusions

The phase error for a given number of filter coefficients

can vary by 5 orders of magnitude depending on the choice

of filter window. With a suitable choice of window, it is

apparent that very low phase errors can be achieved with

relatively low order filters. For example, an RMS phase error

of 0.0006 degrees can be obtained with 29 filter coefficients

with a Kaiser window having B=7. This is less than the

phase error resulting from the quantization of noiseless signal

data to 14 bit resolution.

Some generalizations can be made concerning the shape

of the windows. Although windows which have low sidelobe

levels are usually good, the converse is not always true. For

example the Harming window has a considerably superior

phase error/image rejection ratio performance to the

Hamming window although having a larger first sidelobe

level. The Harming window also compares well with the

Kaiser window having the same mainlobe width (B=5.44)

except for filters having a small number of coefficients.

However, the Kaiser window, unlike the Hamming window,

has a large superiority in passband flatness. In general, the

best performance is obtained for windows whose first

derivative smoothly decreases to zero at the sample points

immediately outside the window bounds. It is not sufficient

that the window continuously decrease to zero as is shown by

the poor performance of the Bartlett (triangular) window.

The image rejection ratio shows a dependence on the

mismatching of the frequency responses of the I and ,Q

channels consistent with the theoretical relationship given by

1+2E@ +E@2
lr~)= IoLog (2)

1-2E@ +E@2’

Where E(fi) is the ratio of gains of the I and Q channels at a

frequency fi and the filters have a relative phase shift of rc/2

[2], As is the case for the phase error, there is a large

variation for different types of windows. It is noteworthy that

greater than 100 dB of image suppression can be obtained

with only 13 filter coefficients, of which 2 have values of

zero.

While very good results can be achieved for the phase

error and image rejection ratio with a small number of filter

coefficients (for example by using Kaiser or Chebyschev

windows with high values of B or R, respectively), there is

a high cost in the passband flatness and the size of the

transition bandwidth between the pass and stopbands. Since

the phase error and image rejection ratio results are for

sinusoidal signals at a single frequency, there is no aliasing

distortion and deviations from a flat passband frequency

response are unimportant. Consequently, it is expected that

the errors for wideband signals are much larger, and the

flatness of the passband frequency response should be

considered in designing the quadrature demodulation filters.

Also, the effects of quantizing the filter coefficients can be

important in hardware implementations designed for low cost.

Nevertheless, quadrature demodulation filters designed for

good frequency matching can provide significant benefits in

applications such as frequency demodulators for signals

having wideband FM modulation providing a sufficiently

high sampling rate is used.
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Figure 2. RMS phase error over [fJ8,3fJ8] for

rectangular and cosine windows as a function of the

total number of filter coefficients.
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Figure. 3. Peak phase error over [fJ8,3fJ8] for

rectangular and cosine windows as a function of the

total number of filter coefficients.
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Figure 4. RMS phase error over [fJ8,3f)8] for Kaiser

and Chebyshev windows as a function of the total

number of filter coefficients.
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Figure 5. Peak phase error for Kaiser and Chebyshev

windows over [f,/8,3fi8] as a function of the total

number of filter coefficients.

FOff= 30,00195 FO,,= tO.125 FOff= *0.25 Fe,f = *0.375

Hamming (N=13) 47.8 dB 56.9 dB 48,8 dB 45,7 dB

Harming (N=l 3) 66,4 dB 73,5 dB 65.6 dB 59,7 dB

Cheb. (N=13, R=90) 108.1 dB 115,4 dB 109.0 dB 104,1 dB

Hamming (N=29) 56,3 dB 56.6 dB 57,6 dB 58.5 dB

Harming (N=29) 88,0 dB 88.2 dB 88,9 dB 89.6 dB

Cheb (N=29, R=200) 141,6dB 142,1 dB 143,3 dB 145,1 dB

Table 1. Image rejection ratio for sinusoidal signal offset in frequency from quadrature demodulator center
frequency, Frequency offsets are normalized to -0,5 at f,/8 and +0,5 at 3f,/8,

Number of Coeff. Hamming Harming Chebyshev

13 47.3 dB (44.8 dB) 65.8 dB (63.3 dB) 107.6 dB (105.1 dB) (R=90)

29 55.9 dB (53.4 dB) 87.6 dB (85.1 dB) 141.1 dB (138,3 dB) (R=200)

45 58,8 dB (56,3 dB) 115.6 dB(l13.l dB) 141,1 dB (138.3 dB) (R=200)

Table II. Peak Spurious Signal and, between parenthesis, Signal to Distortion Ratio for demodulated signal
having sinusoidal frequency modulation (Fexc = O,Olf~, Fmod = 0,00195 f~, f~ =fJ4), FM demodulation is
performed by differentiating the unwrapped signal phase using a 5 point Lagrange differentiator,
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