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Abstract

The accuracy of digital quadrature demodulation can be
improved by optimizing the matching of the inphase and
quadrature channel frequency responses. It is shown that an
image rejection performance exceeding 100 dB can be
achieved using Finite Impulse Response filters having as few
as eleven nonzero coefficients.

Introduction

In coherent radar, communication and electronic warfare
systems, it is often useful to form the inphase (I) and
quadrature (Q) components of a bandpass signal after it has
been shifted to a convenient intermediate frequency (IF). The
classical analog quadrature demodulation appproach has the
problem that accurate amplitude and phase matching of the
inphase and quadrature channels cannot be easily achieved
[11-[3]. Another error results from DC offsets introduced
during the analog-to-digital conversion of the I and Q
signals. These errors are particularly serious in coherent radar
systems where they yield spurious sidebands at the image
doppler frequency [2]. Consequently, digital approaches for
performing quadrature demodulation on a digitized IF signal
have attracted attention. Problems with the matching of
analog components are eliminated and it is straightforward to
achieve high accuracy through the use of filters having a
sufficiently large number of coefficients. However, the
computational cost can be a significant disadvantage when
wideband signals must be processed in real-time.

This problem has led to the development of digital
quadrature demodulation algorithms designed for low
computational cost [4]-[6]. These also have significant
deficiencies. Approaches based on Hilbert Transformers (e.g.,
[6]) don't suppress DC offsets and require selective analog IF
filters since the quadrature demodulator does not have usable
stopbands. Alternatively, if Infinite Impulse Response filters
are used, as proposed in [5], there are difficulties with a
frequency dependent group delay.

Figure 1 shows an alternative digital quadrature
demodulator which employs a pair of Finite Impulse
Response (FIR) highpass filters whose phase shifts differ by
/2. The even and odd samples of a bandpass signal
nominally centered on an Intermediate Frequency (IF) of fiz
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and sampled at a rate f=4f; are separately processed by the
two filters. The decimation operations reduce the output data
rate in each channel to f/4 and result in the highpass output
signals from the filters aliasing to baseband without explicit
mixing. The inphase and quadrature highpass filters are
obtained by multiplying the coefficients {hy, ..., h, h, h,
hy, h,, ..., by} of a prototype FIR lowpass filter by cos km/2
(even k) and sin kn/2 (odd k) respectively. This algorithm is
efficient since the inphase filter can be a half-band filter
with nearly half of its coefficients equal to zero and the
decimation operations result in the output data rate being
matched to the bandwidth of the filters. Note that the
stopbands of [DC,f/8] and [3f/8,f/2] possessed by the
resultant complex filter relax the stopband attenuation
requirements of the analog IF filter and suppress DC offsets.
The relationship of this quadrature demodulator to
approaches involving quadrature mixing and lowpass filtering
is discussed in [6].

Although the inphase and quadrature filters are derived
from a common prototype filter, they have a different number
of coefficients and their frequency responses do not exactly
match. The matching of the frequency responses is very
important because it determines the phase error/image
suppression performance that is obtainable [2].

This paper presents a new approach where the problem
of matching the frequency responses is considered in the
filter design methodology. It is shown that the error
performance is strongly dependent on the choice of filter
design parameters and tradeoffs with other performance
parameters such as passband flatness are discussed. The
results presented are for the window design method, but we
have found that analogous results are obtained for the Remez
exchange method.

Effects of Filter Design Parameters

The windows considered were the common first and second
order cosine windows and the Kaiser and Chebyshev
windows. For each window, pairs of I and Q filters having
odd numbers of coefficients up to a maximum of 49 were
designed. The frequency responses of the filters were
determined at 64 discrete frequencies distributed over the
bandwidth [f/8,f/4]. Because the frequency responses are
symmetric about f/4, it is not necessary to compute them
over the full bandwidth [f/8,3f/8]. The phase error bound [7]
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was computed using

() =arctan(|QUY /1K) N -n/4, 1)

where Q(f) and I(f) are the magnitudes of the frequency
responses of the Q and I channels at a discrete frequency f,.
In the time domain, the phase error will oscillate between
-0,(f) and +6,(f) with a frequency 4/f;-f/4]. For small values
of 0,(f;), the RMS value of the phase error at £, ¢, (f}), will
be approximately ¢e(fi)/\/2. Using this result, a measure of the
performance for all f;is provided by the RMS phase error
given by [Z0,,(f)¥/1]° where I is the number of discrete
frequencies. Although this approach is an indirect way of
measuring the phase error, we have found good agreement
with direct measurements of the phase error of the quadrature
demodulator for simulated sinusoidal signals.

Figures 2 and 3 plot the RMS and peak phase errors for
the rectangular and common cosine windows as a function of
the total number of filter coefficients used by the I and Q
filters. The Hamming window, although better than a
rectangular window, has a poor performance and its general
trend shows only a slow improvement with an increasing
number of filter coefficients. The phase error for the Hanning
window is considerably better and its trend with respect to
the number of coefficients shows a steeper slope. The
Blackman window shows a further improvement. A rather
different behaviour is observed for the Kaiser and
«LChebyschev windows plotted in Figures 4 and 5. The phase
error rapidly decreases as the number of filter coefficients
increases and then fluctuates around a value that is largely
determined by the window parameters R and B and has only
a weak dependence on the number of filter coefficients.

Another performance parameter that can be measured is
the image rejection ratio. For a sinusoidal input signal, the
expected output signal of a quadrature demodulator has a
spectral component at a frequency corresponding to the
frequency offset of the input signal from the center frequency
of the quadrature demodulator (f;z). The ratio of the power in
this spectral component to the spurious image at the negative
frequency is the image rejection ratio. Table I presents image
rejection ratios obtained for several filter designs at several
frequency offsets.

Some investigations were carried out concerning the
effects of different windows on the distortion performance
achieved with the quadrature demodulator when used in an
FM demodulator. Table II gives the peak spurious signal and
total distortion to signal power ratios for the demodulated
signal where the input signal is frequency modulated by a
sinusoid of frequency 0.00195f, with a frequency deviation
of 0.01f,.

Discussion and Conclusions
The phase error for a given number of filter coefficients

can vary by 5 orders of magnitude depending on the choice
of filter window. With a suitable choice of window, it is
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apparent that very low phase errors can be achieved with
relatively low order filters. For example, an RMS phase error
of 0.0006 degrees can be obtained with 29 filter coefficients
with a Kaiser window having B=7. This is less than the
phase error resulting from the quantization of noiseless signal
data to 14 bit resolution.

Some generalizations can be made concerning the shape
of the windows. Although windows which have low sidelobe
levels are usually good, the converse is not always true. For
example the Hanning window has a considerably superior
phase error/image rejection ratio performance to the
Hamming window although having a larger first sidelobe
level. The Hanning window also compares well with the
Kaiser window having the same mainlobe width (B=5.44)
except for filters having a small number of coefficients.
However, the Kaiser window, unlike the Hamming window,
has a large superiority in passband flatness. In general, the
best performance is obtained for windows whose first
derivative smoothly decreases to zero at the sample points
immediately outside the window bounds. It is not sufficient
that the window continuously decrease to zero as is shown by
the poor performance of the Bartlett (triangular) window.

The image rejection ratio shows a dependence on the
mismatching of the frequency responses of the I and Q
channels consistent with the theoretical relationship given by

1+2E(f)+E(f)?

. (2)
1-2E(f) +E(f)*

L(f)=10Log

where E(f)) is the ratio of gains of the I and Q channels at a
frequency f; and the filters have a relative phase shift of ®/2
[2]. As is the case for the phase error, there is a large
variation for different types of windows. It is noteworthy that
greater than 100 dB of image suppression can be obtained
with only 13 filter coefficients, of which 2 have values of
Zer0.

While very good results can be achieved for the phase
error and image rejection ratio with a small number of filter
coefficients (for example by using Kaiser or Chebyschev
windows with high values of B or R, respectively), there is
a high cost in the passband flatness and the size of the
transition bandwidth between the pass and stopbands. Since
the phase error and image rejection ratio results are for
sinusoidal signals at a single frequency, there is no aliasing
distortion and deviations from a flat passband frequency
response are unimportant. Consequently, it is expected that
the errors for wideband signals are much larger, and the
flatness of the passband frequency response should be
considered in designing the quadrature demodulation filters.
Also, the effects of quantizing the filter coefficients can be
important in hardware implementations designed for low cost.
Nevertheless, quadrature demodulation filters designed for
good frequency matching can provide significant benefits in
applications such as frequency demodulators for signals
having wideband FM modulation providing a sufficiently
high sampling rate is used.
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Figure 2. RMS phase error over [f/8,3f/8] for
rectangular and cosine windows as a function of the
total number of filter coefficients.
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Figure 1. Quadrature demodulation algorithm. The IF center
frequency fi and Nyquist bandwidth are fixed at /4.
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Figure 3. Peak phase error over [f/8,3f/8] for
rectangular and cosine windows as a function of the
total number of filter coefficients.
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Figure 4. RMS phase error over [f/8,3f/8] for Kaiser
and Chebyshev windows as a function of the total
number of filter coefficients.
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Figure 5. Peak phase error for Kaiser and Chebyshev
windows over [f/8,3f,8] as a function of the total
number of filter coefficients.

F o = +0.00195 Fon=+0.125 Fou=%0.25 F o = +0.375
Hamming (N=13) 47.8 dB 56.9 dB 48.8 dB 45.7 dB
Hanning (N=13) 66.4 dB 73.5 dB 65.6 dB 59.7 dB
Cheb. (N=13, R=90) 108.1 dB 115.4 dB 109.0 dB 104.1 dB
Hamming (N=29) 56.3 dB 56.6 dB 57.6 dB 58.5 dB
Hanning (N=29) 88.0 dB 88.2 dB 88.9 dB 89.6 dB
Cheb (N=29, R=200) 141.6 dB 142.1 dB 143.3 dB 145.1 dB

Table I. Image rejection ratio for sinusoidal signal offset in frequency from quadrature demodulator center
frequency. Frequency offsets are normalized fo -0.5 at f,/8 and +0.5 af 3f/8.

Number of Coeff.

Hamming

Hanning

Chebyshev

13 47.3 dB (44.8 dB) 65.8 dB (63.3 dB) 107.6 dB (105.1 dB) (R=90)
29 55.9 dB (53.4 dB) 87.6 dB (85.1 dB) 141.1 dB (138.3 dB) (R=200)
45 58.8 dB (56.3 dB) 115.6 dB (113.1 dB) 141.1 dB (138.3 dB) (R=200)

Table ll. Peak Spurious Signal and, between parenthesis, Signal to Distortion Ratio for demodulated signal
having sinusoidal frequency modulation (Fexc = 0.01f,, Fmod = 0.00195 f, f, =f/4). FM demodulation is
performed by differentiating the unwrapped signal phase using a 5 point Lagrange differentiator.
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